Written by Harriet Smith, RD. Peer-reviewed by Clare Thornton-Wood, RD.
Section 1: Background Information
Sarcopenia
Sarcopenia is a progressive and generalised skeletal muscle disorder, characterised by low muscle strength, low muscle quality or quantity, and low physical performance.
It is associated with an increased likelihood of adverse outcomes such as falls, fractures, physical disability, and mortality.1
Key Statistics
Sarcopenia which is largely attributable to ageing is known as primary sarcopenia.6 Sarcopenia is considered ‘secondary’ when other causes (e.g. malignancy or malnutrition) are implicated.¹ It can be acute (lasting less than six months) or chronic (lasting ≥6 months). Acute sarcopenia is usually associated with an acute illness or injury, whereas chronic sarcopenia is associated with long-term, progressive conditions and increased risk of mortality.¹
Signs and Symptoms
Common signs and symptoms of sarcopenia include:¹
Aetiology
The aetiology of sarcopenia is largely multifactorial.
Potential causes of sarcopenia include:¹
Updated Definition and Diagnostic Criteria
In 2018 the European Working Group on Sarcopenia in Older People (EWGSOP2) updated its 2010 consensus recommendations; they developed an operational definition of sarcopenia (see below) to assist with diagnosis.¹
Criterion | Criterions Met | Diagnostic Outcome |
1. Low skeletal muscle strength | 1 | Probable sarcopenia |
2. Low skeletal muscle quality or quantity | 1 and 2 | Confirmed sarcopenia |
3. Low physical performance | 1, 2, and 3 | Severe sarcopenia |
EWGSOP2 recommend using low skeletal muscle strength as the primary diagnostic parameter as it is the most reliable measure of muscle function.¹
A sarcopenia diagnosis is confirmed by the presence of low muscle strength and low muscle quantity/quality. When low muscle strength, low muscle quantity/quality, and low physical performance are all detected, sarcopenia is considered severe.
Variable | Validated Tool/Test | Practicalities in a Clinical Setting |
Case finding (i.e. identifying those at risk) |
SARC-Fquestionnaire |
SARC-F is a simple, easy, and rapid screening tool which could form part of a dietetic assessment It has been suggested that SARC-F may not be appropriate for use in community-dwelling adults8 . The Ishii screening tool could be a suitable alternative. |
Skeletal muscle strength |
Handgrip strength (HGS) Chair stand test (CST) |
Muscle function reacts early to nutritional deprivation; HGS (measured using a hand dynamometer) is a useful marker of muscle function and nutritional status in a clinical setting.9 The CST strength is a simple way to access the strength of leg muscles. The CST measures the amount of time needed for a patient to rise five times from a seated position without using their arms3 |
Skeletal muscle quality or quantity |
Appendicular skeletal muscle mass (ASMM) by Dual-energy X-ray absorptiometry (DXA) Whole-body skeletal muscle mass or ASMM predicted by Bioelectrical impedance analysis (BIA) Lumbar muscle cross-sectional area by CT or MRI |
These tools and tests may not be readily available in NHS clinical establishments BIA machines are sometimes used in research settings and/or private practice. However, BIA may not be a suitable measurement for someone with restricted mobility as it requires them to stand on the machine unsupported |
Physical performance |
Gait speed Short physical performance battery (SPPB) Timed-up-and-go test (TUG) 400-metre walk |
Gait speed is a quick, safe and highly reliable test for sarcopenia. It involves timing how long it takes the patient to walk a distance of four metres.3 For the TUG test, the participant is asked to rise from the chair, walk a distance of 3 metres, return, and sit down again3 |
To learn more about these specific tests and tools, including defined cut-off points for sarcopenia, please click here.
In clinical practice, EWGSOP2 advises implementing the following diagnostic pathway:
*EWGSOP2 advises that steps 1 and 2 are sufficient to trigger an assessment of causes and start interventions in a clinical setting.
Section 2: The Impact of Sarcopenia
When left untreated sarcopenia has a significant impact on individuals, society, and the wider healthcare system.
On an individual level, sarcopenia is associated with:
In patients living with cancer, sarcopenia is associated with treatment tolerance issues. For example, in patients undergoing neoadjuvant chemotherapy for oesophagogastric cancer, sarcopenia is a significant predictor of dose-limiting toxicity.18
Cancer patients with sarcopenia also have a lower quality of life, worsened fatigue, decreased physical function, and longer hospital stays relative to cancer patients without this disorder.19 Additionally, sarcopenia impairs function and health status in COPD patients.20
On a wider level, sarcopenia is associated with increased hospital admissions and healthcare costs. A cross-sectional study of over 200 older adults found sarcopenia and low muscle strength at hospital admission were independently associated with increased hospital costs.21 A further study from the Czech Republic suggests that direct healthcare costs are 2-fold higher in patients with sarcopenia than those without.22
Section 3: Nutritional Strategies for Sarcopenia
When treating or preventing sarcopenia, the aim is to minimise skeletal muscle loss and preserve muscle function through a combination of physical activity (which includes resistance exercise) and good nutrition.³
Beyond eating a healthy and balanced diet and maintaining adequate hydration, current dietary recommendations for the prevention and treatment of sarcopenia focus on protein and vitamin D.
Energy and Protein Requirements
Eating enough energy (calories) to maintain a healthy body mass index (BMI) is important for the prevention of malnutrition; a contributing factor in the pathogenesis of sarcopenia.23 Similarly, ensuring an adequate intake of protein is important for preventing and treating sarcopenia and frailty.³
Guidelines from the European Society for Parenteral and Enteral Nutrition (ESPEN) and an international study group who reviewed dietary protein needs in aging (PROT-AGE) recommend increasing protein intake, through food-first techniques or supplementation, to 1.0-1.2 g/kg body weight/day (with even higher intakes in those with severe injury or illness) in older people.24, 25
Below is a list of energy and protein-dense foods which could be included in an older person’s diet to increase calories and protein:
In older adults who are unable to meet their nutritional requirements through an oral diet alone, high-energy, high-protein oral nutrition supplements may be useful for meeting energy and protein requirements. Increasing protein intake by 30g per day has been shown to improve physical performance in frail, community-dwelling older adults.26>
What Does 30g Protein Look Like?
There is not enough evidence to make practice recommendations for essential amino acid supplementation.³
Vitamin D
Vitamin D plays an important role in bone and muscle strength and it may also have a protective role in reducing muscle loss.27> Low levels of vitamin D are significantly associated with the risk of frailty.28>
A systematic review and meta-analysis of randomised controlled trials found supplementing people with vitamin D had a small positive effect on muscle strength. The researchers found greater levels of sarcopenia in people who presented with a vitamin D deficiency (25-hydroxyvitamin D level < 30 nmol/L) or were aged 65 years or older.29>
All UK adults, including those at increased risk of vitamin D deficiency, should consume a 10 microgram (400 IU) Vitamin D supplement daily from October to March.30 People with very little or no sunlight exposure should consume 10 micrograms of vitamin D throughout the year. If a vitamin D deficiency is detected, higher dosage supplementation is recommended according to local prescribing guidance.
Other Nutrients
Other micronutrients such as calcium, magnesium, and phosphorus are known to play an important role in bone health.31 There is also some evidence that antioxidants such as vitamin C and vitamin E may help to prevent skeletal muscle loss. Thus, older adults should be encouraged to consume a healthy and balanced diet which provides the recommended daily amount for these micronutrients.
Multidisciplinary (MDT) Approach
Whilst this article has focused on the importance of nutritional strategies in the prevention/management of sarcopenia, it is important to highlight that other strategies such as tailored exercise programmes (delivered by a suitable qualified HCP) form an important part of a wider MDT approach.
Section 4: Useful Resources on Sarcopenia
To complete CPD questions on this resource
Click Here to Find Out More About AYMES Nutrition
1. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age and Ageing. 2019.
2. Santilli V, Bernetti A, Mangone M, Paoloni M. Clinical definition of sarcopenia. Clinical Cases in Mineral and Bone Metabolism. 2014.
3. Cruz-Jentoft AJ, Landi F, Schneider SM, Zúñiga C, Arai H, Boirie Y, et al. Prevalence of and interventions for sarcopenia in ageing adults: A systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing. 2014.
4. Jones SE, Maddocks M, Kon SSC, Canavan JL, Nolan CM, Clark AL, et al. Sarcopenia in COPD: Prevalence, clinical correlates and response to pulmonary rehabilitation. Thorax. 2015.
5. Morishita S. Prevalence of Sarcopenia in Cancer Patients: Review and Future Directions. Int J Phys Med Rehabil. 2016.
6. Sayer AA, Syddall H, Martin H et al. The developmental origins of sarcopenia. J Nutr Health Aging 2008; 12: 427–32.
7. Dodds R, Denison HJ, Ntani G, Cooper R, Cooper C, Sayer AA, et al. Birth weight and muscle strength: A systematic review and meta-analysis. Journal of Nutrition, Health and Aging. 2012.
8. Yang M, Hu X, Xie L, Zhang L, Zhou J, Lin J, et al. SARC-F for sarcopenia screening in community-dwelling older adults Are 3 items enough? Med (United States). 2018;
9. Norman K, Stobäus N, Gonzalez MC, Schulzke JD, Pirlich M. Hand grip strength: Outcome predictor and marker of nutritional status. Vol. 30, Clinical Nutrition. 2011. p. 135–42.
10. Tanimoto Y, Watanabe M, Sun W, Tanimoto K, Shishikura K, Sugiura Y, et al. Association of sarcopenia with functional decline in community-dwelling elderly subjects in Japan. Geriatr Gerontol Int. 2013.
11. Kim M, Won CW. Sarcopenia is associated with cognitive impairment mainly due to slow gait speed: Results from the Korean frailty and aging cohort study (KFACS). Int J Environ Res Public Health. 2019.
12. Bischoff-Ferrari HA, Orav JE, Kanis JA et al. Comparative performance of current definitions of sarcopenia against the prospective incidence of falls among community-dwelling seniors age 65 and older. Osteoporos Int 2015; 26: 2793–802.
13. Malmstrom TK, Miller DK, Simonsick EM et al. SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J Cachexia Sarcopenia Muscle 2016; 7: 28–36.
14. Bahat G, Ilhan B. Sarcopenia and the cardiometabolic syndrome: a narrative review. Eur Geriatr Med 2016; 6: 220–23.
15. Bone AE, Hepgul N, Kon S et al. Sarcopenia and frailty in chronic respiratory disease. Chron Respir Dis 2017; 14: 85–99.
16. Beaudart C, Biver E, Reginster JY et al. Validation of the SarQoL(R), a specific health-related quality of life questionnaire for Sarcopenia. J Cachexia Sarcopenia Muscle 2017; 8: 238–44.
17. Liu P, Hao Q, Hai S, Wang H, Cao L, Dong B. Sarcopenia as a predictor of all-cause mortality among community-dwelling older people: A systematic review and meta-analysis. Maturitas. 2017.
18. Tan BHL, Brammer K, Randhawa N, Welch NT, Parsons SL, James EJ, et al. Sarcopenia is associated with toxicity in patients undergoing neoadjuvant chemotherapy for oesophago-gastric cancer. Eur J Surg Oncol. 2015.
19. Morishita S. Prevalence of Sarcopenia in Cancer Patients: Review and Future Directions. Int J Phys Med Rehabil. 2016.
20. Jones SE, Maddocks M, Kon SSC, Canavan JL, Nolan CM, Clark AL, et al. Sarcopenia in copd: Prevalence, clinical correlates and response to pulmonary rehabilitation. Thorax. 2015.
21. Antunes AC, Araújo DA, Veríssimo MT, Amaral TF. Sarcopenia and hospitalisation costs in older adults: a cross-sectional study. Nutr Diet. 2017.
22. Steffl M, Sima J, Shiells K et al. The increase in health care costs associated with muscle weakness in older people without long-term illnesses in the Czech Republic: results from the Survey of Health, Ageing and Retirement in Europe (SHARE). Clin Interv Aging 2017; 12: 2003–07.
23. Cruz-Jentoft AJ, Kiesswetter E, Drey M, Sieber CC. Nutrition, frailty, and sarcopenia. Aging Clin Exp Res. 2017.
24. Deutz NEP, Bauer JM, Barazzoni R, Biolo G, Boirie Y, Bosy-Westphal A, et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin Nutr. 2014.
25. Bauer J, Biolo G, Cederholm T, Cesari M, Cruz-Jentoft AJ, Morley JE, et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the prot-age study group. J Am Med Dir Assoc. 2013.
26. Tieland M, van de Rest O, Dirks ML, van der Zwaluw N, Mensink M, van Loon LJC, et al. Protein Supplementation Improves Physical Performance in Frail Elderly People: A Randomized, Double-Blind, Placebo-Controlled Trial. J Am Med Dir Assoc. 2012.
27. Welch AA. Nutritional influences on age-related skeletal muscle loss. Proc Nutr Soc. 2014.
28. Zhou J, Huang P, Liu P, Hao Q, Chen S, Dong B, et al. Association of vitamin D deficiency and frailty: A systematic review and meta-analysis. Maturitas. 2016.
29. Beaudart C, Buckinx F, Rabenda V, Gillain S, Cavalier E, Slomian J, et al. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: A systematic review and meta-analysis of randomized controlled trials. Journal of Clinical Endocrinology and Metabolism. 2014.
30. SACN. Vitamin D and Health 2016. Sci Advis Comm Nutr. 2016.
31. Palacios C. The role of nutrients in bone health, from A to Z. Crit Rev Food Sci Nutr. 2006.